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ABSTRACT: Cardiomyocytes derived from human induced pluripotent
stem (iPS) cells enable the study of cardiac physiology and the
developmental testing of new therapeutic drugs in a human setting. In
parallel, machine learning methods are being applied to biomedical
science in unprecedented ways. Machine learning has been used to
distinguish healthy from diseased cardiomyocytes using calcium (Ca2+)
transient signals. Most Ca2+ transient signals are obtained via terminal
assays that do not permit longitudinal studies, although some recently
developed options can circumvent these concerns. Here, we describe the
use of machine learning to identify healthy and diseased cardiomyocytes
according to their contractility profiles, which are derived from
brightfield videos. This noncontact, label-free approach allows for the
continued cultivation of cells after they have been evaluated for use in
other assays and can be readily extended to organs-on-chip. To demonstrate utility, we assessed contractility profiles of
cardiomyocytes obtained from patients with Timothy Syndrome (TS), a long QT disease which can lead to fatal arrhythmias, and
from healthy individuals. The videos were processed and classified using machine learning methods and their performance was
evaluated according to several parameters. The trained algorithms were able to distinguish the TS cardiomyocytes from healthy
controls and classify two different healthy controls. The proposed computational machine learning evaluation of human iPS cell-
derived cardiomyocytes’ contractility profiles has the potential to identify other genetic proarrhythmic events, screen therapeutic
agents for inducing or suppressing long QT events, and predict drug−target interactions. The same approach could be readily
extended to the evaluation of engineered cardiac tissues within single-tissue and multi-tissue organs-on-chip.
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1. INTRODUCTION

Cardiomyocytes derived from human induced pluripotent
stem (iPS) cells are finding utility in the discovery of new
therapeutic agents and in the modeling of human diseases in
vitro.1 Because human iPS cells, when differentiated, retain the
original genotype from the cell donor, they are increasingly
used in studies that go beyond measuring mere cardiac
functionality, into the realm of modeling human cardiovascular
diseases, such as long QT syndrome, myocarditis, acute
ischemia, and further into high-throughput cardiotoxicity
screening.2−9

An example of successful recapitulation of human disease in
vitro by human iPS cell-derived cardiomyocytes is Timothy
Syndrome (TS), a disease characterized by prolonged QT
intervals.10 Patients with TS carry a spontaneous autosomal
dominant gain-of-function mutation in the CACNA1C gene
encoding Cav1.2 channels. Two known effects of this mutation
are the slower inactivation of the ion channels, resulting in
prolongation of the QT interval, and cardiac arrhythmia that
can lead to sudden cardiac death.11 TS patients commonly
exhibit bradycardia, an outcome that has been replicated in

vitro using iPS cell-derived cardiomyocytes from affected
patients.10

Machine learning, the process of training an algorithm to
make predictions or decisions based on experimental data, has
been used to process multidimensional datasets in an objective
and automated fashion, providing the opportunity to store and
analyze large datasets quickly, rather than having to manually
preselect a limited number of parameters and thereby
overlooking potentially valuable information.12 Supervised
machine learning is a subtype of machine learning in which a
set of data with known classifications is used to train an
algorithm by building a statistical model that fits the data. This
trained model can then be applied to unknown data to predict
their classification and performance.
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One of the current challenges in treating cardiac disease and
in the development of new therapeutic agents is the need for
their accurate and fast preclinical detection and screening. By
integrating machine learning techniques with current models,
preclinical drug screening and disease modeling can be
accelerated in an automated, easy-to-use fashion. Machine
learning algorithms can accelerate the classification of diseased
cells, identify side effects of new cardioactive drugs under
development, or evaluate the arrhythmic risk of patient-derived
cells or cells exposed to new therapeutic agents.
Machine learning has been only rarely used for data

obtained from human iPS cell-derived cardiomyocytes. Some
groups have used machine learning techniques to predict the
outcome of iPS cell differentiation protocols, while others
focused on quality control of their cardiomyocyte cul-

tures.13−15 Machine learning has also been used in the
development of high-throughput and sensitive drug screening
platforms and as an action potential classifier.16,17 Machine
learning algorithms have been trained to identify peaks of
calcium (Ca2+) transients in arrhythmogenic cardiomyocytes
and the action potential of healthy cells exposed to
antiarrhythmic drugs.18,19 One study introduced a method
for automated analysis of the arrhythmic field potentials of cells
exposed to cardioactive drugs, while another study reported
the use of a platform paired with machine learning algorithms
to detect changes in cardiac functionality after drug
exposure.20,21

Recently, healthy and diseased cardiomyocytes were
separated by machine learning algorithms based on analysis
of calcium transient signals.22−24 Calcium signaling plays an

Figure 1. Experimental overview. (A) Human induced pluripotent stem (iPS) cells were differentiated into cardiomyocytes from three different cell
lines. After differentiation, their contractility profiles were evaluated using brightfield videos. (B) Contractility trace obtained from brightfield
videos. (C) The performance of the algorithms was evaluated using parameters calculated from their confusion matrixes and receiver operating
characteristic (ROC) curves.
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important role in cardiac functionality, both under healthy and
pathological conditions. However, calcium transients are
frequently obtained via terminal assays, preventing the use of
the evaluated cells in future experiments and ongoing analysis.
Some recently developed options can circumvent these
concerns, but they are still not used routinely. Data obtained
using a noncontact, online, label-free approach allows for the
classification of cells without precluding their use in
longitudinal studies (where the same cells are analyzed over
time), in other assays, or in the screening of therapeutic agents.
Machine learning algorithms can be further leveraged with new
analysis tools in lieu of calcium signals from single cells. We
previously developed a MATLAB script to analyze brightfield
videos of beating cardiomyocytes and generate a contractility
trace that can be used to calculate contractility parameters.25,26

This approach enabled us to assess contractility profiles
without the need to label or dissociate cells, allowing cell
labeling for further analysis.
We hypothesize that the contractility profiles obtained from

brightfield videos can be used to reliably classify healthy and
diseased cardiomyocytes. To test this hypothesis, we differ-
entiated cardiomyocytes from three cell lines (two healthy and
one from a TS patient). Their contractility traces were
extracted from brightfield videos and analyzed using a custom
MATLAB script. The calculated contractility parameters
served as a data input to several machine learning algorithms
that were trained to distinguish the contractile behaviors of
diseased and healthy cells. We propose that these algorithms
for automated analysis of contractility profiles can be used to
detect pathologic phenotypes and evaluate therapeutic agents.

2. EXPERIMENTAL DESIGN
We obtained contractility profiles from 20-second(s) long brightfield
videos of contracting cardiomyocytes. The contractility parameters
calculated from these profiles were used to train and test supervised
machine learning algorithms to distinguish cell phenotypes. The
trained algorithms were designed for the automated, high-throughput,
unbiased evaluation of cells. To this end, we differentiated
cardiomyocytes from three iPS cell lines: two from healthy donors
and one from a TS patient (Figure 1A). The contractility of
differentiated cardiomyocytes was assessed via brightfield videos using
a custom MATLAB script we previously developed.25,26 This script
generates a contractility trace and extracts several contractility
parameters (Figure 1B), which were used as input for different
algorithms. Several supervised machine learning algorithms were
trained, and their predictability was assessed from their accuracy in
classifying healthy and diseased cardiomyocytes (Figure 1C). From
the confusion matrices of each algorithm, we calculated the
performance parameters as described below: the true positive rate
(TPR) for each cell line being classified, and the accuracy, F1 score,
and Matthew correlation coefficient (MCC) of the algorithm trained.
Using these four parameters and the receiver operating characteristic
(ROC) curve, we were able to assess how accurately each algorithm
classified the samples, as detailed in the Experimental Methods.

3. EXPERIMENTAL METHODS
3.1. Cell Culture and Cardiomyocyte Differentiation. Human

iPS cells were obtained through material transfer agreements from B.
Conklin, Gladstone Institute (WTC-11, healthy) and M. Yazawa,
Columbia University (TS). A third cell line (BS2, healthy) was
developed and validated for our research at the Columbia Stem Cell
Core Facility. Cells were maintained on 1:60 growth factor reduced
Matrigel (Corning) in mTeSR1 medium (STEMCELL Technolo-
gies), supplemented with 1% penicillin/streptomycin, and changed on
a daily basis. Cells were passaged at 85−90% confluence using 0.5
mM EDTA (Invitrogen). During the first 24 hours (h), the culture

medium was supplemented with 5 mM Y-27632 dihydrochloride
(Tocris).

Using a previously established protocol, cardiac differentiation of
human iPS cells was initiated in 90% confluent cell monolayers by
replacing the mTeSR1 medium with CDM3, a chemically defined
medium with three components: RPMI Medium 1640 (1×, Gibco),
500 μg mL−1 of recombinant human albumin (Sigma-Aldrich), and
213 μg mL−1 of L-ascorbic acid 2-phosphate (Sigma-Aldrich),
supplemented with 1% penicillin/streptomycin.27 The medium was
changed every 48 h. For the first 48 h, the medium was supplemented
with 3 mM of glycogen synthase kinase 3 inhibitor CHIR99021
(Tocris). On day 2, the culture was switched to CDM3 medium
supplemented with 2 mM of the Wnt inhibitor Wnt-C59 (Tocris).
After day 4 of differentiation, the medium was changed to CDM3
with no supplements. Contracting cells were noted around day 10,
when the medium was changed to RPMI 1640 supplemented with B-
27 (50X; Gibco). For this study, we used cardiomyocytes from
separate, consecutive differentiations. By pooling the cells together,
we reduced the impact of possible variations in cardiac function due
to different differentiations and measured the average properties for
each specific line of cells.

All cells were maintained at 37 °C and 5% CO2 in Heracell 150
incubators (Thermo Fisher Scientific), using 2 mL of medium per 10
cm2 of surface area, and were routinely checked for mycoplasma
contamination using a MycoAlert Plus Kit (Lonza). Pluripotent cells
were routinely checked for expression of pluripotency markers.

3.2. Contractility Profiles. Brightfield videos (20 s long, 100
frames per second) were recorded on a Nikon Ti−U inverted
microscope using an ANDOR Zyla 5.5 sCMOs camera and analyzed
using the custom MATLAB script we previously developed.25,26

Specifically, tissue contractility was measured by analyzing changes in
pixel intensity from a baseline reference frame and creating traces of
pixel motion over time. Our approach is similar to that of other
groups who developed comparable scripts to evaluate cardiac
contractility and behavior using other measurable properties.28−30

Several contractility parameters were derived from these traces
(Figure 1B), as previously described.26 The contractility parameters
included beat frequency, peak-to-peak time, and interbeat variability,
defined as the standard deviation of the time between peaks. The R90
time to peak was defined as the time between 10% of the contraction
and the peak amplitude. R90 time from the peak was defined as the
time between the peak and 90% of the relaxation. R50 times to and
from the peak were defined analogously to R90 times, as the times
between 50% of contraction and the peak and from the peak to 50%
of the relaxation. The peak width was defined as the distance from
contraction to relaxation at 50% of the peak.

We obtained brightfield recordings of macroscopically contracting
cardiomyocytes, at days 15 through 36 of differentiation, that
sustained synchronous contractions for over 20 s of the video.
Among hundreds of regions that were recorded, we randomly selected
the samples from different cell culture plates to analyze for this
project. This random selection resulted in a total of 138 videos of iPS
cell-derived cardiomyocytes from a TS patient, 148 videos of
cardiomyocytes from healthy BS2 cells, and 174 videos of
cardiomyocytes from healthy WTC-11 cells.

3.3. Supervised Machine Learning Algorithms. Contractile
behavior of different cell lines was computed by applying supervised
machine learning methods to determine the best classification
methods for this purpose. Before classification, the dataset was z-
score standardized so that each parameter had a mean of zero and
unit variance, ensuring that each parameter was assigned equal
importance. The resulting dataset was analyzed separately by various
machine learning algorithms, as detailed below.

To visualize the multidimensional dataset in a two-dimensional
plot, we applied the t-distributed stochastic neighbor embedding (t-SNE)
algorithm, an algorithm for dimensionality reduction, allowing for the
visualization of high-dimensional datasets. We implemented seven
different frequently used and investigated distance measures (Cheby-
shev, City block, Correlation, Cosine, Euclidean, Mahalanobis, and
Spearman), with perplexity set at 30.31,32
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The k-nearest neighbor (k-NN) algorithm is one of the earliest
developed classification algorithms, and it classifies an unlabeled data
point based on the points that are closest to it.33−35 Its performance
depends mainly on three factors: k value, distance measure, and
distance weighting scheme. These factors are data-dependent, and for
each dataset a suitable combination must be searched independently.
The k value indicates the number of nearest neighbors of a data point
to consider when classifying the data point. In this study, we tested
odd values of k to avoid ties when classifying the samples. The k-NN
algorithm can calculate the distance between the unlabeled data point
and the surrounding neighbors using several distance measures. Here,
we tested seven different frequently used and investigated distance
measures (Chebyshev, City block, Correlation, Cosine, Euclidean,
Mahalanobis, Spearman). In this algorithm, we can give different
weights to the neighboring data points to automatically classify the
unlabeled data points. We also tested three different distance
weighting schemes (equal weights, inverse weighting, squared inverse
weighting).
Decision trees are another group of algorithms commonly used in

supervised machine learning.36 These algorithms are represented as a
sequence of branching statements. They are easy to interpret, low on
memory usage, and fast. We varied the number of trees from 1 to 100,
with a step size of 1. We also tested quadratic discriminant analysis-
based algorithms.37,38

Naiv̈e Bayes classif iers are a class of probability-based algo-
rithms.34,39 We tested this class with four different types of kernel
density estimation (normal, box, Epanechnikov, and triangle). We
also used Support Vector Machine (SVM) algorithms.40 These are a
class of methods commonly used, and their performance is dependent
on the selection of a kernel function and parameter values. We tested
different box constraint (C) values with each kernel function
(quadratic, cubic, and RBF) to ensure the best possible result.
We trained and tested every algorithm using a 5-fold cross

validation process. Briefly, the data were randomly split into five equal
sized subsets. Of these five, one was retained as the testing set, and the
remaining four were used as the training set. This cross-validation
process was repeated four times, with each of the five subsets used
once as the testing set. The results of the five rounds were then
averaged to produce a single result. In each cross-validation process,
110 TS, 118 BS2, or 139 WTC-11 samples were used for training,
while 28 TS, 30 BS2, or 35 WTC-11 samples were used for testing.
After testing each algorithm, its performance was described in a

confusion matrix and ROC curve (Figure 1C). A confusion matrix is a
table often used to describe the performance of a supervised
algorithm, summarizing how successful the algorithm’s predictions
were.41 It has two dimensions, one indexed by the true class of the
sample and the other by the class predicted by the algorithm. A true
positive (TP) is when the algorithm correctly predicted its
classification, while a false positive (FP) is when the algorithm
misclassified the sample.
Several performance metrics were defined based on the confusion

matrices: TPR, accuracy, F1 score, and MCC. These metrics can
evaluate the performance of an algorithm as follows. TPR, also known
as recall, is the probability that a cell line will be properly classified. It
is calculated using eq 1. Accuracy, which is defined as the fraction of
predictions the algorithms got right, is calculated using eq 2. The F1
score, the harmonic mean of precision and recall, is defined by eq 3.
MCC is a measure of the quality of binary classifications and is
calculated from eq 4.

=
+

×TPR
TP

TP FN
100

(1)

= +
+ + +

×Accuracy
TP TN

TP TN FP FN
100

(2)

=
+ +

×F
TP

TP (FP FN)
1001 1

2 (3)

= × − ×
+ + + +

×

MCC
TP TN FP FN

(TP FP)(TP FN)(TN FP)(TP FP)

100 (4)

A ROC curve presents the performance of the classification algorithm
at all classification thresholds, plotting the true positive rate and false
positive rate (Figure 1D). The area under the ROC curve (AUC) is
the probability that the algorithm ranks a random positive sample
(TS) more highly than a random negative sample (WTC-11 or BS2).
AUC ranges from 0 to 1, and an algorithm whose predictions are
100% correct has an AUC of 1.0.

3.4. Statistical Analysis. Data were analyzed and graphed in
Excel (Microsoft), Prism (GraphPad), and MATLAB (MathWorks).
Data are presented as mean + standard deviation. Differences between
experimental groups were analyzed by a Kruskal−Wallis test, followed
by Dunn’s multiple comparisons test. Significant differences defined
by P < 0.05 (*), P < 0.01 (**), P < 0.001 (***), and P < 0.0001
(****).

4. RESULTS
The goal of this project was to determine if healthy and
diseased cardiomyocytes could be classified independently
using their contractility profiles. To this end, we tested several
supervised learning algorithms as described above.
The means and standard deviations of all eight parameters

show clear differences among the three cell lines, which
indicate a favorable classification between the different groups
(Table 1, Figure 2). By implementing the t-SNE algorithm and

applying several distance measures, we were able to reduce the
dimensions of our dataset and visualize it in a two-dimension
plot (Figure S1).
The algorithms with the best performance when classifying

WTC-11 and TS cardiomyocytes were quadratic discriminant
analysis and decision trees, both with 92% accuracy (Table 2).
These two algorithms had an AUC of 0.96 (Figure 3A). High
performance was also obtained using k-NN (Mahalanobis
metric and squared inverse weighting, k = 3; 91% accuracy)
and SVM with cubic kernel (C = 0.22859; 91% accuracy;
Tables 2). Other algorithms are listed in Table S1. Overall, the
classification between WTC-11 and TS was very successful
based on accuracy, F1 score, and the MCC of the algorithms.

Table 1. Means and Standard Deviations of the Eight
Parameters Obtained from the Contractility Traces

contractility
parameters WTC-11 BS2 TS

beat
frequency
(bpm)

54.57 ± 19.69 52.17 ± 19.34 31.10 ± 18.51

peak to peak
time (s)

1.206 ± 0.305 1.425 ± 0.784 2.809 ± 1.647

interbeat
variability
(s)

0.0356 ± 0.0884 0.1070 ± 0.1721 0.4905 ± 0.7116

R90 time to
peak (s)

0.2424 ± 0.1394 0.3116 ± 0.2018 0.4030 ± 0.3473

R50 time to
peak (s)

0.1081 ± 0.0961 0.1977 ± 0.1718 0.2857 ± 0.2682

R90 time
from peak
(s)

0.2247 ± 0.1204 0.3193 ± 0.1879 0.4975 ± 0.4382

R50 time
from peak
(s)

0.0955 ± 0.0700 0.1788 ± 0.1507 0.3113 ± 0.3138

peak width
(s)

0.1900 ± 0.1389 0.3393 ± 0.2330 0.4851 ± 0.3472
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When classifying BS2 and TS cardiomyocytes, the best
performing algorithms were the decision trees (88% accuracy)
and SVM with cubic kernel (C = 18; 87% accuracy; Table 3).
These algorithms showed AUC of 0.90 and 0.91 (Figure 3B).
Other algorithms are listed in Table S2. The classification
between BS2 and TS was not as successful as between WTC-
11 and TS.
After successfully classifying healthy and diseased cardio-

myocytes, we tested if the same algorithms could be used to
classify the two healthy controls from different donors. The

algorithms with best performance when distinguishing the
healthy WTC-11 and BS2 derived cardiomyocytes were
decision trees, Naiv̈e Bayes with normal kernel, and SVM
with quadratic and cubic kernel, all with accuracies above 90%
(Table 4). Decision trees and SVM with quadratic kernel
yielded the highest AUC (0.95 and 0.93, respectively, Figure
3C). Other algorithms are listed in Table S3. Overall, the
classification between the two healthy controls was also very
successful when taking into consideration the four performance
parameters and AUC of each algorithm.

Figure 2. Contractility parameters. The eight parameters were calculated from the contractility traces of cardiomyocytes differentiated from three
human iPS cell lines. Data is presented as mean + standard deviation. Differences between experimental groups were analyzed by Kruskal−Wallis
test, followed by Dunn’s multiple comparisons test. Significant differences are defined by P < 0.05 (*), P < 0.01 (**), P < 0.001 (***), and P <
0.0001 (****).
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5. DISCUSSION
Machine learning algorithms were first developed decades ago,
but became highly useful in biomedical engineering only
recently with their integration in studies with human iPS cell-
derived cardiomyocytes. Tissue engineering studies generate
multidimensional datasets which require automated, unbiased,
and comprehensive analysis. Machine learning enables
complete utilization of all relevant information while handling
datasets of considerable size. A recent study has generated a
multiclass drug model that accurately classified a set of new
compounds, while another group has shown the possibility of
classifying genetic cardiac diseases by calcium transient signals
recorded from cardiomyocytes using supervised machine
learning algorithms.16,22−24 These studies used fluorescent
calcium dyes which can interfere with the functionality of
cardiomyocytes, are toxic, require UV light which is also
harmful to cells, and do not permit long-term recordings
because of their low temporal resolution.42 The fluorescent
dyes have a high affinity for Ca2+ and can artificially prolong
calcium transients and confuse interpretation of measured
data.43 These potential interferences should be considered
when calcium signaling is used to evaluate cell functionality
and phenotype. Genetically encoded indicators of calcium
signaling developed in recent years can circumvent some of the
issues with calcium dyes, while they still can affect the folding
and functioning of cellular proteins.44,45

In the present study, the contractility profiles were obtained
using label-free brightfield videos. We report the use of
supervised machine learning to analyze multidimensional data
for cell contractility in an automated manner. The input data
consisted of more than 450 total samples from three different
cell lines (two healthy and one diseased). According to TPR,
the observed TS samples were more difficult to classify than
both healthy samples. A probable cause is that the healthy
groups had more data points than the TS group. Performance
results were exceptionally good for decision trees, quadratic
discriminant analysis, and SVM algorithms in both classi-
fication scenarios. We also observed good performance by the
k-NN algorithm with the Mahalanobis distance metric when
classifying WTC-11 and TS. These results indicate the
possibility of discriminating between genetic cardiac diseases
using contractility profiles obtained from brightfield contrac-

tility videos and supervised machine learning algorithms. We
demonstrate a proof of principle that cardiomyocytes can be
properly classified based on noninvasive measurements of their
contractility profiles.
Even though the models had previously demonstrated high

predictability for analyzing the long QT syndrome, their
predictive power should be tested for other cardiac diseases.
Future work will need to focus on improving the predictive and
discovery power of the trained algorithms to classify cardiac
pathologies. In addition, datasets from more healthy donors
should be used to further optimize the algorithms and
classification. For this reason, we tested if the same algorithms
used to classify healthy and diseased groups could also classify
the two healthy groups. According to TPR, we observed that
WTC-11 samples were more easily correctly classified than
BS2 samples. The algorithms with the best performance when
classifying WTC-11 and BS2 were decision trees, support
vector machines, k-NN, and Naiv̈e Bayes with different kernels.
Adding larger numbers of diverse groups of cells from healthy
donors with diverse backgrounds (sex, ethnicity, race) in future
studies will probe the ability of machine learning algorithms to
properly classify different cell phenotypes without misclassifi-
cations or assuming healthy variations to be caused by a
specific disease or drug.
While the performance parameters indicate that these

models provide proper classification, they also point at
opportunities for reducing errors and obtaining performance
scores closer to 100%. These classification models could be
further improved by the addition of brightfield videos from
studies in which healthy cardiomyocytes are exposed to drugs
with known side effects. These studies would join work from
other groups in the identification of a drug’s arrhythmic risk,
and the models would help classify new therapeutic agents with
higher arrhythmic risk in preclinical models.16−20 Machine
learning can also be readily applied with other noninvasive
techniques (supernatant analysis) to glean more information
about a disease, improve classification of different groups, or to
test the efficacy and safety of different drugs. These
measurements could help the development of new therapeutic
agents, as they would indicate cardiac toxicity prior to other
preclinical and clinical testing.
Another way to extend the power of machine learning is to

pursue more varied approaches. In this study, we only tested
supervised learning methods. Deep learning methods have
received a lot of attention and can be used for similar
applications, but these methods require large training sets to
form a reliable and predictive model. Contractility videos,
frozen frames, and electrophysiological parameters obtained
with microelectrode array or patch clamp could also be added
to the training sets to increase the predictability of the
algorithms. Future studies should also explore the optimal
duration of brightfield videos for cell classification and analyze
if shorter or longer recordings can alter algorithm performance.
As different types of data are obtained, it might be critical to

include the weight of different variables into the training of the
models. Feature selection is a method for selecting a subset of
variables that increases the predictive power in the trained
models. With this selection, models could be trained with an
optimal subset of variables improving their performance and
providing faster predictions and a better understanding of the
entire process. This selection can prevent overfitting, reduce
the model size, and improve interpretability.

Table 2. Classification of WTC-11 and TS Cells (Results of
Algorithms with the Best Performance)

TPR
WTC-
11 (%)

TPR
TS
(%)

Accuracy
(%)

F1
score
(%)

MCC
(%)

Decision trees 93 91 92 91 85
Quadratic discriminant
analysis

98 84 92 90 84

SVM with cubic kernel, C =
0.22859

94 87 91 90 83

k-NN with Mahalanobis
metric and squared inverse
weighting, k = 3

94 87 91 89 82

SVM with quadratic kernel,
C = 998

92 87 90 88 80

k-NN with Mahalanobis
metric and equal
weighting, k = 1

91 87 89 88 79

k-NN with Mahalanobis
metric and inverse
weighting, k = 5

90 88 89 88 79

Naiv̈e Bayes with box kernel 88 81 85 83 72
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Figure 3. ROC curves of the algorithms with the highest AUC. (A) Classification of WTC-11 and TS. (B) Classification of BS2 and TS. (C)
Classification of BS2 and WTC-11.
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An important factor in training machine learning algorithms
is the size of the dataset. In our study, we were limited by the
size of the TS group. With limited datasets, it is difficult to
generate different and sufficiently large subsets for training and
testing. Cross-validation, as we did in our study, allows for the
training and testing of algorithms with confidence using
smaller datasets. As we collect more samples and increase the
size of our dataset in future experiments, we should be able to
use fully separate samples for training and testing of
algorithms. On the other end, training models on datasets
larger than the one used in this study are computationally
demanding, so it is desirable to develop an efficient
methodology to estimate the dataset size requirement when
developing a model for a given task. Some groups have
developed statistical methodologies based on fitting inverse
power law models to construct empirical learning curves,
estimating dataset size requirements for different classification
algorithms.46,47 Studies with 2D cultures on how algorithm
performance scales with dataset size could inform the
determination of the minimum sample size for using a specific

algorithm for a specific application, assigning resources to the
most promising options and freeing them to explore other
options. Future studies of 2D samples would inform how best
to develop robust models by estimating through efficient
progressive sampling the amount of data required to develop
an accurate model.
This study demonstrates the potential of machine learning

for the classification of diseased human iPS cell-derived
cardiomyocytes. We believe that our approach can be readily
applied to other cardiac diseases to more fully utilize datasets
for enhancing the evidence-based decision making in disease
modeling and drug development, by allowing analysis of
multidimensional datasets in an objective, sensitive, automated,
and user-independent fashion. This method could be used in
diagnosing genetic cardiac diseases and evaluating risks of
arrhythmia. The application of machine learning to organs-on-
chip preclinical models could accelerate and improve disease
modeling and drug development, as data collected in complex
systems like 3D tissues or multi-organ systems under various
experimental conditions could also be analyzed with machine
learning algorithms.

6. CONCLUSION
In summary, we present the implementation of supervised
machine learning on contractility profiles from human iPS cell-
derived cardiomyocytes. In an automated fashion, we were able
to classify iPS cell-derived cardiomyocytes differentiated from
two healthy and one diseased iPS cell line. This approach could
be adapted to adult-like tissue-engineered cardiac models to
interpret diverse output data of in vitro complex systems.
An advantage of this approach is that it utilizes brightfield

videos of unlabeled cardiomyocytes derived from iPS cells
from healthy donors and from patients with TS, a long QT
syndrome. Using parameters obtained from contractility traces
as input data, we showed that several supervised machine
learning algorithms successfully classified the healthy and
diseased cardiomyocytes. These algorithms also successfully
classified the healthy cardiomyocytes from two different
donors. In ongoing studies, we aim to further test and improve
these recognition and classification capabilities and extend
them to the analysis of contractility profiles for other cardiac
diseases and cardioactive drugs. Computational machine
learning algorithms could become an automated, high-
throughput, and high-complexity screening tool in studies of
cardiac contractility.
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