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Abstract

Current interventions fail to recover injured myocardium after infarction and prompt the need 

for development of cardioprotective strategies. Of increasing interest is the therapeutic use of 

microRNAs to control gene expression through specific targeting of mRNAs. In this Review, we 

discuss current microRNA-based therapeutic strategies, describing the outcomes and limitations 

of key microRNAs with a focus on target cell types and molecular pathways. Last, we offer 

a perspective on the outlook of microRNA therapies for myocardial infarction, highlighting the 

outstanding challenges and emerging strategies.

INTRODUCTION

Heart disease remains as the leading cause of mortality worldwide, with myocardial 

infarction (MI) affecting more than 700,000 individuals annually in the United States alone 

(1). Because the adult heart lacks ability to innately repair and regenerate after injury, MI 

results in permanent loss of myocardial cells (2). The damaged heart undergoes pathological 

remodeling, leading to reduced contractile function and often heart failure (3). Standard 

therapies mainly focus on revascularizating the occluded artery to salvage as much of the 

myocardium as possible but fail to adequately recover injured myocardium. Any advances in 

the treatment of MI would thus have major clinical significance.

The human heart is composed of an array of different cell types including cardiomyocytes 

(CMs), cardiac fibroblasts (CFs), endothelial cells (ECs), and immune cells. Each cell 

type contributes to cardiac function in a distinct way, with intercellular communication 

and coordination being vital to maintaining normal organ function (Fig. 1). The 

pathological changes in cardiac remodeling after MI involve each of these cell types and 

multiple molecular mechanisms during four partially overlapping phases: the inflammatory, 
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proliferative, maturation, and remodeling phases (3). The inflammatory phase is initiated 

by massive cell death in the infarct area. Although CFs degrade the extracellular matrix 

(ECM), changes in EC-mediated vascular permeability allow immune cells to migrate 

into the injured area and facilitate clearance of damaged cells. In the proliferative phase, 

inflammation is dampened by macrophage phenotypic switching, and reparative processes 

begin. Fibroblasts and ECs proliferate, deposit collagen, and establish a new microvascular 

network in the infarct area. In the maturation phase, ECM proteins secreted by activated 

fibroblasts undergo cross-linking to form a stable scar. Last, during long-term remodeling, 

maladaptive processes including cardiomyocyte pathological hypertrophy, remote fibrosis, 

and capillary rarefaction occur to contend with the stresses arising from the failing heart 

(Fig. 1).

Recently, microRNAs (miRNAs) have emerged as a promising therapy for MI. miRNAs 

are small noncoding RNAs that regulate gene expression at the posttranscriptional level 

(4). Mature, single-stranded miRNAs are incorporated into miRNA-induced silencing 

complexes, the functional unit that targets mRNAs with near-perfect base pairing to inhibit 

gene expression (5). Known to interact with the majority of mammalian protein-coding 

genes, miRNAs are powerful mediators of a diverse spectrum of processes, both during 

normal heart development and physiology and during cardiovascular disease progression (6). 

miRNAs are implicated in every phase of MI progression; in response to ischemia, miRNAs 

in both mouse and human hearts have been shown to be dysregulated, contributing to the 

progression of many pathological processes.

For treatment of MI, miRNAs represent particularly attractive therapeutic targets due to 

several unique characteristics. Most important is the pleotropic ability of a single miRNA to 

regulate multiple pathologically disrupted biological pathways across different cell types 

(7). This is in stark contrast to traditional drug-based approaches that target singular 

molecules and pathways. Such a pleiotropic approach is especially powerful for treatment 

of MI because injury is not instigated by a single genetic link or biological process but 

rather by multiple coordinated processes. In addition, miRNAs are ideal therapeutic targets 

because they are small, precisely defined nucleic sequences for which mimics or antisense 

oligonucleotides (ASOs) can effectively and efficiently be designed with high affinity and 

specificity. Last, when compared to cell-based approaches, miRNA therapies may provide 

similar benefits without the challenges of immune rejection and poor cell engraftment.

Although miRNA therapies have potential for treating MI, a major challenge that limits their 

clinical advancement is a lack of understanding of the molecular mechanisms behind their 

therapeutic properties. Specifically, the pleotropic effects of a miRNA on each cell type and 

on different biological pathways within the heart must be carefully delineated to facilitate 

clinical translation. In this Review, we examine recently published studies describing the 

therapeutic manipulation of miRNAs in the treatment of MI. We describe the effect of 

miRNAs on each cell type and how miRNAs directly target molecular pathways to modulate 

cell type–specific behavior. Last, we discuss key prospects and challenges for developing 

miRNA therapies.
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CHARACTERISTICS OF miRNA THERAPIES

Focusing on literature within the past 3 years and foundational studies from the past 10 

years, we identified a total of 213 relevant studies detailing 116 unique miRNAs (Fig. 2). 

Therapeutic miRNA targets were identified by two methods: (i) miRNA profiling after MI, 

which revealed substantial dysregulation of miRNAs natively expressed in the heart; and 

(ii) miRNA screening in in vitro injury models, which identified potential proregenerative 

miRNAs not natively expressed in the heart. To understand cell type–specific effects of 

miRNA therapies, we organized the reviewed miRNAs by the cell types they target. For each 

study, we extracted a set of characteristics describing each miRNA. miRNAs were defined 

as beneficial if treatment with miRNA mimics resulted in improved recovery after MI and 

as harmful if treatment with miRNA inhibitors resulted in improved recovery after MI. We 

noted the model systems each study used in vitro and in vivo as well as the delivery of the 

miRNA therapies (miRNA formulation and the method of administration). For each miRNA 

studied, we detail the target pathway and the specific target molecule.

Using these characteristics, we assigned a clinical applicability score representing a 

qualitative measure of the evidence supporting the therapeutic application of each miRNA 

reviewed. This score is denoted by the footnotes in Table 1. “*” indicates therapeutic 

efficacy in in vitro cell-based models; “**” indicates therapeutic efficacy in in vivo models 

with target pathway identification and characterization; and “***” indicates therapeutic 

efficacy in multiple model systems and well-defined mechanisms of action including 

comprehensively validated direct targets. Table 1 presents a select list of key miRNAs 

for each cell type. The complete list of surveyed miRNAs is presented in table S1 and 

summarized in table S2.

Most miRNAs play both beneficial and harmful roles in the progression of MI. In addition, a 

majority of miRNAs affect multiple cell types, thus demonstrating the important pleiotropic 

effects of miRNAs when used in cardiac therapy. Here, we first highlight post-MI events 

by cell type, briefly describing how key processes in each cell type affect their phenotype 

and function. After providing this contextual framework, we examine the recent advances in 

miRNA therapies targeting each cell type.

ROLE OF miRNAs IN CARDIOMYOCYTE RESPONSE TO MYOCARDIAL 

INFARCTION

Cardiomyocytes are the functional cells of the heart, responsible for generating contractile 

force. Because of their large energy demands, cardiomyocytes are highly susceptible to 

death upon loss of blood supply. Cardiomyocytes have limited proliferative ability, and those 

lost during MI cannot be replaced (8). Thus, two major approaches to therapeutically target 

cardiomyocytes after MI are prevention of cardiomyocyte cell death after ischemic stress 

and induction of cardiomyocyte proliferation after resolution of injury.

Cardiomyocyte response to myocardial infarction

Apoptosis and necrosis—The primary pathways of regulated cardiomyocyte cell death 

during MI are apoptosis and necrosis, both of which have distinct molecular mechanisms 
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and cellular conditions. Mechanistically, apoptosis and necrosis can both be subdivided 

into mitochondria- and receptor-mediated pathways, known as the intrinsic and extrinsic 

pathways during apoptosis and as mitochondrial necrosis and necroptosis during necrosis. 

During MI, the intrinsic pathway is initiated when free radical generation and low adenosine 

triphosphate (ATP) lead to mitochondrial stress and subsequent perturbation of the B 

cell lymphoma 2 (BCL-2) family of proteins. Simultaneously, mitochondrial necrosis 

is initiated when intracellular Ca2+ overload alters the dynamics of the mitochondrial 

membrane, leading to a disruption in permeability. This results in a rapid decrease in 

ATP, which prevents the cell from carrying out necessary repair functions, leading to 

organelle dysfunction and plasma membrane rupture. The extrinsic pathway of apoptosis 

and necroptosis are both triggered during MI by release of stimuli outside the cell that 

activates death receptors on the cell surface such as Fas ligand activating Fas receptor (FasR) 

and tumor necrosis factor–α (TNFα) activating TNF receptor 1 (TNFR1) (9).

Autophagy—In response to the ischemic or metabolic stress during MI, cardiomyocytes 

can activate the process of autophagy, which allows them to catabolize damaged or 

dysfunctional macromolecular structures by lysosomal degradation to maintain cellular 

homeostasis. Primary players in cardiomyocyte autophagy include the mammalian target 

of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) pathways (10). Although 

undoubtedly critical in cardiomyocyte response to MI, the role of autophagy in mediating 

the extent of myocardial injury is uncertain.

Proliferation and remodeling—Historically, adult cardiomyocytes have been described 

as postmitotic, but this paradigm has shifted, with studies indicating that cardiomyocytes 

proliferate to a small extent in the adult myocardium (11). Although limited, exogenously 

promoted cardiomyocyte proliferation has become a potential therapeutic strategy for 

heart failure. Over the past decade, several promising targets have emerged that induce 

cardiomyocyte proliferation, including Hippo–Yes-associated protein (YAP), homeodomain-

only protein (HOPX), and follistatin-related protein 1 (FSTL) (12–14).

Because of the loss of functional cells after MI, cardiomyocytes undergo hypertrophy and 

morphological changes to adapt to the physical demands of the injured heart. Although 

initially compensatory, prolonged increases in functional demands eventually lead to 

pathological remodeling and a decrease in cardiomyocyte function. Infarcted tissue also 

interrupts gap junctions between cardiomyocytes, causing aberrant electrical conduction 

leading to arrhythmias (15).

Recent advances in miRNA therapies targeting cardiomyocytes

Most studies (132 of 213 studies) describing the therapeutic application of miRNAs to 

MI have cardiomyocytes as the primary target cell type. These studies have focused on 

identifying and using miRNAs capable of either preventing cardiomyocyte death (88 of 132 

studies) or promoting cardiomyocyte proliferation (18 of 132 studies). Here, we summarize 

key therapeutic miRNAs and their mechanisms of action in cardiomyocytes (Fig. 3).

Liu et al. Page 4

Sci Transl Med. Author manuscript; available in PMC 2022 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Apoptosis—Many miRNAs have been identified that regulate components of apoptosis 

pathways, with beneficial miRNAs inhibiting these pathways to prevent cardiomyocyte 

apoptosis and harmful miRNAs inducing apoptosis after injury. In early apoptosis, 

mitochondrial fission leads to activation of mitochondria-mediated cardiomyocyte death. 

In a series of studies, Wang and colleagues (16) described five miRNAs that target 

components of mitochondrial fission machinery. They identified two beneficial miRNAs, 

miR-499 and miR-652, which prevent mitochondrial fission. miR-499 directly inhibits 

both the α and β isoforms of the calcineurin catalytic subunit, thereby decreasing the 

accumulation of dynamin-related protein 1 (DRP1), a guanosine triphosphatase required 

for mitochondrial fission (16). miR-652 inhibits the proapoptotic mitochondrial membrane 

protein MTP18 (17). In contrast, miR-361 and miR-539 were identified as harmful 

miRNAs that inhibit prohibitins 1 and 2, respectively, increasing mitochondrial fission and 

apoptosis after MI (18, 19). miR-421 was also identified as harmful after MI as it directly 

targets the mitochondrial Ser/Thr kinase PTEN induced kinase 1 (PINK1), which inhibits 

mitochondrial fission (20).

Harmful miRNAs including miR-195 and miR-1 have been shown to directly inhibit the 

antiapoptotic protein BCL-2 that regulates the intrinsic pathway (21, 22). Alternatively, 

beneficial miRNAs such as miR-19b and miR-24 have been shown to directly inhibit the 

proapoptotic protein Bcl-2-like protein 11 (BIM) (23, 24). In a foundational study, Qian et 
al. (24) demonstrated that the overexpression of miR-24 via intramyocardial injection of a 

miR-24 mimic attenuated ischemia-induced injury and restored cardiac function by directly 

reducing BIM expression. miRNAs affect other components of the intrinsic pathway: For 

example, miR-125b inhibits proapoptotic Bcl-2 homologous antagonist/killer 1 (BAK1), 

miR-17 inhibits proapoptotic apoptotic protease activating factor-1 (APAF-1), and miR-27a 

inhibits Bcl-2 interaction protein 3 (BNIP3) (25–27). To modulate the extrinsic pathway, 

miR-133b can down-regulate the death receptor FasR, and the effector caspase-3 can be 

inhibited by miR-1192 (28, 29). Last, miR-327 has been shown to inhibit apoptosis repressor 

with caspase recruitment domain (ARC), a potent repressor of the intrinsic and extrinsic 

signaling pathways (30).

In cardiomyocytes, multiple pathways respond to ischemic stress and injury after MI 

and ultimately determine whether the cell undergoes apoptosis. The PI3k/AKT pathway 

plays a major role in controlling cell survival and the inhibition of programmed 

cell death through stimulatory phosphorylation of prosurvival genes and the inhibitory 

phosphorylation of proapoptotic genes (31). Many miRNAs modulate the PI3k/AKT 

pathway in cardiomyocytes after MI. Specifically, the central AKT inhibitor phosphatase 

and tensin homolog (PTEN) can be directly targeted by miRNAs miR-146b, miR-182, 

miR-26a, miR-494, and miR-93 (32–35). Song et al. (36) demonstrated that miR-320 

directly inhibits the ligand insulin growth factor 1 (IGF-1) after ischemia-reperfusion 

injury (IRI), thus preventing IGF receptor-mediated activation of the PI3k/AKT pathway. 

Restoring IGF-1 function using a lentivirus expressing miR-320 inhibitor led to a decrease 

in the number of apoptotic cardiomyocytes and preserved cardiac function (36). Another 

notable pathway regulating apoptosis centers around the molecule programmed cell death 4 

(PDCD4), which is up-regulated during apoptosis and functions as a proapoptotic inhibitor 

Liu et al. Page 5

Sci Transl Med. Author manuscript; available in PMC 2022 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of gene transcription and translation. During MI, many miRNAs directly inhibit PDCD4 

and prevent apoptosis in cardiomyocytes including miR-200, miR-499, miR-532, and, 

importantly, miR-21, a miRNA with notable pleiotropic effects (37–42).

Additional pathways implicated in cardiomyocyte apoptosis include protein kinase C (PKC), 

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Notch, and reactive 

oxygen species (ROS) homeostasis. In PKC-mediated apoptosis, the harmful miRNAs 

miR-1, miR-143, and miR-31 have been shown to directly target antiapoptotic protein 

kinase C epsilon (PRKCE), thereby leading to increased cardiomyocyte apoptosis (43–45). 

In NF-κB signaling, miR-145a exerts beneficial effects by inhibiting early growth response 

1 (EGR1)–mediated NF-κB activation. In Notch signaling, the harmful miRNAs miR-363 

and miR-429 directly inhibit the Notch 1 receptor, preventing Notch-mediated antiapoptotic 

signaling (46, 47). In contrast, miR-322 targets the Notch inhibitor FBXW7, up-regulating 

Notch signaling and preventing apoptosis after MI (48). In the regulation of ROS, miRNAs 

can directly affect mitochondrial respiration. For example, the harmful miR-762 inhibits 

the mitochondrial nicotinamide adenine dinucleotide + hydrogen (NADH) dehydrogenase 

subunit ND2 leading to increased ROS production, whereas the beneficial miR-183 inhibits 

the mitochondrial membrane ion channels voltage-dependent anion channel 1 (VDAC1) 

leading to decreased ROS production (49, 50). In addition, Su et al. (51) showed that 

miR-132 inhibits histone deacetylase HDAC3, preventing its ability to up-regulate genes that 

promote ROS accumulation in cardiomyocytes.

Necrosis—Large numbers of cardiomyocytes undergo necrotic cell death after ischemic 

injury, providing the main stimulus for postinfarction inflammatory activation. Here, 

beneficial miRNAs prevent cardiomyocyte necrosis, whereas harmful miRNAs induce 

necrosis after injury. The central component of necroptosis activation is the assembly of the 

receptor-interacting protein kinase 1 (RIPK1)–RIPK3-mixed lineage kinase-like (MLKL) 

signaling complex. Two miRNAs, miR-105 and miR-873, prevent necroptosis through the 

direct down-regulation of RIPK proteins (52, 53). In addition, miRNAs can modulate the 

expression of death receptors responsible for initiating necroptosis. The beneficial miR-223 

inhibits the receptors TNFR1 and DR6, thereby preventing necroptosis; whereas the harmful 

miR-103/107 inhibits the antinecrotic receptor Fas-associated death domain protein, thereby 

activating necroptosis (54, 55). Last, the beneficial miR-874 inhibits caspase-8 preventing its 

ability to activate the RIPK signaling complex (56).

Autophagy—Studies have identified miRNAs that modulate post-ischemic autophagy, 

sometimes with contradictory effects on cardiac function. For example, Wang et al. (57) 

demonstrated that miR-188 suppresses autophagy-mediated apoptosis after MI through 

direct inhibition of the autophagy-related gene ATG7. Similarly, Liu et al. (58) showed 

that miR-93 protects cardiomyocytes from apoptosis through inhibition of ATG7. In a 

comprehensive study, Gupta et al. (59) identified miR-22 as a potent inhibitor of cardiac 

autophagy through its targeting of peroxisome proliferator–activated receptor α (PPARα), 

a nuclear receptor known to activate autophagy. However, inhibition of miR-22 leading 

to the activation of autophagy after MI resulted in improved postinfarction remodeling 

and improved cardiac function (59). Similarly, Ucar et al. (60) demonstrated that the 
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miR-212/132 family inhibited autophagy and that their inhibition restored the autophagic 

response, resulting in the rescue of heart failure in mice. Other studies have identified 

miRNAs that can either promote or inhibit autophagy including miR-142, miR-145, 

miR-221, miR-301, miR-18a, miR-199a, miR-30a, and miR-558; however, the ultimate 

therapeutic effects of these miRNAs seem to depend on their individual targets and not the 

overall activation or inactivation of autophagy (61–68).

Proliferation—Cardiac function can be restored after MI by generation of new 

cardiomyocytes. To this end, multiple miRNAs have been identified that can regulate 

cardiomyocyte proliferation. Here, beneficial miRNAs promote, whereas harmful miRNAs 

prevent cardiomyocyte proliferation after injury.

The Hippo-YAP pathway is a critical regulator of organ size and growth that plays an 

important role in cardiomyocyte proliferation (12). In a foundational study that delivered 

a transient proliferative stimulus using miRNA mimics, Tian et al. (69) showed that the 

delivery of miR-302/367 to the infarcted myocardium promoted cardiomyocyte proliferation 

and regeneration by targeting macrophage stimulating 1 (MST1), a central Hippo-YAP 

player. HOPX is a key regulator of heart development and induces cardiomyocyte 

proliferation when overexpressed (14). In a series of studies, the Giacca lab determined that 

miR-590 and miR-199a both promote cell cycle reentry in adult cardiomyocytes by targeting 

HOPX (70). They subsequently demonstrated that the proproliferative effect of miR-199a 

is also dependent on its regulation of the Hippo-Yap pathway (71). Overexpression of 

miR-199a using adeno-associated virus 6 in a swine model of MI resulted in unimpeded 

cardiomyocyte proliferation that progressively reduced the cardiac scar size but eventually 

led to sudden cardiac death in 70% of treated animals (72). The loss of FSTL1 has been 

shown to be a maladaptive response to injury, whereas its restoration resulted in increased 

numbers of proliferating cardiomyocytes (13). Recently, Xiao et al. (73) has demonstrated 

that miR-9 directly inhibits FSTL1 after MI and that the inhibition of miR-9 results in 

restored FSTL1, increases cardiomyocyte proliferation, and preserves cardiac function.

In parallel to targeting these canonical pathways, a set of miRNAs prevents proliferation 

by directly targeting cell cycle regulators such as cyclins. miR-34a and let-7i inhibit cyclin 

D1 and cyclin D2, respectively, suppressing their functions through the cell cycle (74, 75). 

In addition, miR-294 inhibits checkpoint kinase Wee1, preventing its suppression of the 

CDK1/cyclin B1 complex and cell cycle reentry (76). Last, miR-128 inhibits the chromatin 

modifier SUZ12, preventing it from activating positive cell cycle regulators cyclin E and 

CDK2 (77).

Other effects—Beyond cardiomyocyte cell death and proliferation, miRNAs can affect 

other facets of cardiac physiology. The harmful miRNAs miR-1231 and miR-223 induce 

arrhythmias in the heart after MI through inhibition of the ion channels CACNA2D2 

and KCND2, respectively (78, 79). The beneficial miRNAs Let-7a and miR-206 prevent 

pathological cardiomyocyte hypertrophy by targeting calmodulin (CAM) and forkhead 

box protein P1 (FOXP1), respectively (80, 81). Meanwhile, the harmful miRNAs of the 

miR-212/132 family can induce hypertrophy through inhibition of FOXO3 and subsequent 

hyperactivation of NFAT signaling (60). A series of miRNAs have been shown to modulate 
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the ability of cardiomyocytes to activate the inflammatory cascade: miR-128 targets SOX7, 

resulting in increased inflammation; miR-135b targets caspase-1, resulting in reduced 

inflammation; and miR-145 targets CD40, also resulting in reduced inflammation (82–84).

ROLE OF miRNAs IN FIBROBLAST RESPONSE TO MYOCARDIAL 

INFARCTION

After MI, CFs become activated and differentiated into myofibroblasts, which play an 

integral role in the rapid formation of a scar necessary to prevent ventricular wall rupture. 

However, excessive CF activation, proliferation, and ECM deposition after MI contribute 

to pathological cardiac fibrosis, which can exacerbate injury and lead to heart failure. 

Reversion of this activated phenotype with miRNAs is a key approach toward attenuating 

this pathological response.

Fibroblast responses to myocardial infarction

Inflammation—Immediately after MI, fibroblasts produce proinflammatory cytokines 

in response to cardiomyocyte death and inflammatory milieu. Interleukin-1α (IL-1α) 

stimulates CFs to secrete TNFα and IL-1β (85). Fibroblast signaling acts as a source 

of IL-1β positive feedback, attracting immune cells into the infarct zone (86). Cytokine-

activated inflammatory fibroblasts modulate the secretion of proteases including matrix 

metalloproteinases (MMPs) that are essential for clearing the infarct of damaged matrix 

debris (87).

Proliferation—The process that has drawn the most focus in fibroblast repair of the heart 

is their differentiation into myofibroblasts and migration into the infarct zone. Transforming 

growth factor–β (TGF-β) is a key regulator of this phase (88). After MI, TGF-β1 is 

generated by macrophages producing angiotensin II (AngII). AngII has autocrine function, 

causing the up-regulation of TGF-β1 (89). TGF-β1 signaling involves a complex cascade 

of proteins including activating and inhibitory SMADs, with pleiotropic effects. TGF-β 
suppresses MMPs (90) while significantly increasing the production of collagens type 1 

and 3, causing ECM synthesis (91). Activated myofibroblasts express α-smooth muscle 

actin (αSMA), allowing for scar contraction. Notably, TGF-β1 is secreted at an increased 

rate globally in the myocardium after injury, not just directly at the site of infarction (92), 

indicating widespread ramifications of MI.

Scar maturation—During the maturation phase, ECM proteins secreted by activated 

fibroblasts are cross-linked to form a stable scar. Over time, the myofibroblast population in 

the scar decreases (93) through apoptosis and transition into a recently described fibroblast 

phenotype termed the matrifibrocyte that is capable of maintaining the scar integrity (94). 

There is increasing evidence that the myofibroblast phenotype is reversible in vitro: CFs 

isolated from patients with heart failure revert to quiescence upon TGF-β1 inhibition 

(95). Therefore, the failure of myofibroblasts to deactivate has broad implications for 

clinical worsening of MI. Overactivation is driven by multifactorial processes, including the 

persistent secretion of AngII in parts of the heart remote from the site of injury (96). MiRNA 
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therapies targeting fibroblasts seek to break the positive feedback loop of myofibroblast 

activation, in which the stiffening of the heart matrix induces even more TGF-β secretion.

Recent advances in miRNA therapies targeting cardiac fibroblasts

The inhibition of myofibroblast activity is a major focus of ongoing research with the 

identification of beneficial miRNAs that prevent and harmful miRNAs that induce fibroblast 

activation. Particular attention has been put on the TGF-β signaling pathway (15 of 26 

studies). Here, we summarize key miRNAs and their mechanisms of action in CFs (Fig. 4A).

TGF-β signaling—Many miRNAs regulate parts of the TGF-β pathway, including its 

production, cleavage, and signal transduction. The classical upstream regulator of TGF-β, c-

Fos, is regulated by miR-101a, with overexpression of miR-101a leading to reduced fibrosis 

and improved function after MI (96). Concurrently, Zhao et al. (97) identified TGF-β 
receptor 1 (TGFBR1) as another target of miR-101a, using a rat model to show decreases in 

TGF-β signal transduction. Another potential target for TGF-β modulation is AZIN1, as the 

knockdown of AZIN1 up-regulated the TGF-β expression, with miR-433 directly reducing 

AZIN1 in vivo (98). Transfection of miR-433 into CFs increased fibroblast proliferation 

and αSMA expression, whereas injection of a miR-433 antagomir in rats increased AZIN1 

in post-MI hearts, leading to a reduction in fibrosis. Proteases cleaving latent TGF-β to its 

active form can also be targeted by miRNAs to reduce fibrosis. Wang et al. (99) showed 

that miR-24 inhibits furin, one such protease. In vitro overexpression of miR-24 increased 

TGF-β secretion and Smad2/3 phosphorylation, and miR-24 was found to be underexpressed 

in MI tissue.

Many miRNAs target the cellular receptors that bind TGF-β. Hong et al. (100) identified 

TGFBR1 (one of two main receptors for TGF-β) as a target of miR-22. Overexpression of 

miR-22 reduced AngII activation of CFs in vitro. Liang et al. (101) described a reciprocal 

loop by which TGF-β up-regulates miR-21, which then inhibits TGFBR3, a negative 

regulator of TGF-β signaling. The inhibition of TGFBRIII increases TGF-β secretion and 

Smad3 phosphorylation and therefore collagen secretion. Similarly, Du et al. (102) showed 

that miR-328 targets TGFBRIII and that an injection of anti–mir-328 can improve cardiac 

fibrosis post MI in mice.

After binding to the receptor, TGF-β signaling is mediated by decapentaplegic (DPP) 

homologs (SMAD) family. SMAD2/3 couple to the receptor and are phosphorylated by 

TGF-β binding, subsequently binding to SMAD4. SMAD6 and SMAD7 inhibit TGF-β 
signaling. miRNA mimics, which target SMAD2/3/4 and anti-miRs against those that target 

SMAD6/7, can prevent fibrosis. Yuan et al. (103) showed the suppression SMAD7 by 

miR-21, with maladaptive response in fibroblasts. miR-34a is up-regulated after MI, and 

in vivo inhibition of miR-34a reduced post-MI cardiac fibrosis: SMAD4 was identified as 

a direct target of miR-34a (104). Ischemic exosomes isolated from mouse cardiomyocytes 

after MI were abundant in miR-92a, which directly targets SMAD7. Overexpression of 

miR-92a contributed to the activation of fibroblasts (105). These post-MI cardiomyocyte 

exosomes contain miR-195, which also targets SMAD7 (106).
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Last, the downstream effectors of TGF-β, such as connective tissue growth factor (CTGF) 

(107, 108), can also be targeted by miRNAs. Duisters et al. (109) initially identified both 

miR-133 and miR-30 as inhibitors of CTGF. Later, Chen et al. (110) delivered miR-30a 

using adenovirus after MI and observed increased heart function and decreased collagen 

deposition.

Other pathways—The harmful role of miR-21 in cardiac fibrosis was established by 

the Thum lab (111, 112), which showed, in a mouse model of heart failure, that miR-21 

was dysregulated in fibroblasts but not cardiomyocytes. Inhibition of miR-21 increased the 

percentage of apoptotic fibroblasts in the failing heart. They demonstrated that miR-21 

targets Sprouty1, resulting in increased prosurvival extracellular signal–regulated kinase 

(ERK)/mitogen-activated protein kinase (MAPK) signaling. Delivery of anti–miR-21 in vivo 

attenuated fibrosis. Similarly, Cardin et al. (113) demonstrated that miR-21 is up-regulated 

in atria after MI and contributes to the development of fibrosis and arrhythmia in atrial 

fibrillation. miR-21 knockdown reduced atrial fibrosis and stabilized electrical conduction.

Yuan et al. (114) identified miR-144 as a PTEN inhibitor in miniature swine. Overexpression 

of miR-144 or transfection of a PTEN-targeting small-interfering RNA (siRNA) in primary 

human CFs in vitro increased collagen 1 and αSMA mRNA expression.

Since smooth muscle gene expression is a hallmark of differentiated myofibroblasts, 

miRNAs that regulate smooth muscle phenotype are potentially therapeutic. miR-143 and 

miR-145 are transcribed from the same cluster and play a critical role in smooth muscle 

differentiation (115). Li and colleagues (116) showed that miR-143 is up-regulated in human 

MI tissue samples, and miR-143 inhibitors reversed the effects of TGF-β stimulation on 

fibroblasts in vitro. miR-143 directly binds to the 3′ untranslated region of Sprouty3, 

activating p38, ERK, and c-Jun N-terminal kinase pathways. In another study, Wang et al. 
(117) showed that miR-145 is sufficient to increase the myofibroblast phenotype of CFs 

by targeting KLF5, which is a negative regulator of the myocardin serum response factor 

(SRF) pathway. miR-145 inhibition in vivo reduced αSMA expression but increased scar 

size, perhaps indicating a decrease in contractile function of the fibroblasts.

The miR-133a family, mir-133a-1, miR-133a-2, and miR-133b, are also key regulators of 

the SRF pathway. Of these, the two miR-133a genes are identical and specifically expressed 

in cardiac myocytes, whereas miR-133b is expressed in skeletal muscle (118). miR-133a 

is down-regulated in the hearts of patients with MI as well as in animal models (119). 

miR-133a double knockout mice display severe fibrosis and early mortality (118). Expressed 

specifically in cardiomyocytes, miR-133a appears to act in a paracrine manner, reducing the 

secretion of profibrotic cytokines. Duisters et al. (109) showed that miR-133a regulates the 

production of CTGF in cardiomyocytes, a downstream effector of TGF-β signaling.

ECM proteins can also be targeted as the end product of myofibroblast activation. The 

Olson lab demonstrated that miR-29 is decreased after MI and that it targets ECM protein 

mRNAs, including collagens, fibrillin, and elastins (120). Inhibition of miR-29 in vivo 

induced collagen mRNA expression in the heart and other organs. miR-29 was found to 

correlate to collagen expression after MI (121), and collagen 1 was identified as a target 
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of miR-133a (122) in AngII-induced injury. However, an opposite observation was found 

with genetic knockout of the miR-29 cluster in mice, causing cardioprotection and decrease 

in fibrosis (123). The authors suggest that miR-29 may be more dominantly expressed in 

cardiomyocytes versus CFs and that whereas miR-29 may be antifibrotic in the fibroblasts, 

it is deleterious in cardiomyocytes, with the knockout effect dependent on the CM-specific 

effects.

Wingless and Int-1 (WNT) signaling is often dysregulated in fibrosis (124). miR-199a was 

shown to be up-regulated during fibroblast activation and to target secreted frizzled-related 

protein 5 in vitro. Inhibition of miR-199a reduced fibroblast migration and proliferation 

(125). Other studies have found that targeting fibroblast proliferation is beneficial. Cui 

et al. (126) showed that miR-574-5p was up-regulated in TGF-β–induced fibroblast 

activation. miR-574-5p targets ARID3A, which has been implicated in mediating cell cycle 

progression. MiR-590 targets ZEB1, an activator of transcriptional regulator CXCR4, and its 

overexpression inhibited migration, proliferation, and collagen secretion in CFs (127).

ROLE OF miRNAs IN ENDOTHELIAL CELL RESPONSE TO MYOCARDIAL 

INFARCTION

The cardiac muscle has a dense vascular network to meet the high metabolic demands of the 

tissue, and the continuous EC monolayer lining serves as a barrier between the blood and 

myocardium (128). MI severely affects these functions and induces endothelial activation, 

which facilitates recruitment of inflammatory cells during the inflammatory phase and 

mediates the repair and remodeling of the vascular network within the injured cardiac 

tissue via angiogenesis. Thus, miRNA therapy targeting ECs focuses mainly on regulating 

inflammatory recruitment and inducing angiogenesis.

Endothelial cell responses to myocardial infarction

Inflammatory recruitment—Immediately after MI, ischemia activates cardiac ECs to 

a proinflammatory and prothrombotic phenotype (129). The ischemic environment causes 

an increase in the generation of ROS and the presence of proinflammatory cytokines, 

such as TNFα and IL-6 (130). These conditions induce the expression of cell surface 

adhesion molecules, providing sites of adhesion to facilitate the recruitment and attachment 

of circulating leukocytes. The proinflammatory phenotype results in reduced endothelial 

nitric oxide (NO) production and bioavailability, impairing the ability of the endothelium 

to regulate vascular permeability and tone in response to external stimuli. Although 

endothelial activation mediates the inflammatory response within the cardiac tissue, 

prolonged activation and continued imbalance of ROS and NO generation can lead to 

permanent adverse effects, such as endothelial dysfunction and cellular apoptosis (130).

Angiogenesis—Angiogenesis, the process by which new blood vessels form from existing 

vasculature, is essential for cardiac repair after MI, as it is needed to restore sufficient 

blood flow to the injured tissue (131). Revascularization occurs at the site of the infarct as 

well as throughout the surrounding injured tissue via proliferation and migration of ECs. 

Ischemia induces expression of growth factors, which promote EC survival, migration, and 

Liu et al. Page 11

Sci Transl Med. Author manuscript; available in PMC 2022 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



proliferation, such as the vascular endothelial growth factor (VEGF) and fibroblast growth 

factor (FGF) families (132). The hypoxic environment created during ischemia up-regulates 

the expression of hypoxia-inducible transcription factors (HIFs), such as HIF-1α, which 

activate the angiogenic process.

Recent advances in miRNA therapies targeting endothelial cells

Of the studies reviewed, relatively few focused on the EC population (24 of 213). Although 

some studies focus on preventing EC apoptosis or address other effects (5 of 24), most 

studies target the process of angiogenesis (19 of 24). Here, we summarize key miRNAs and 

their mechanisms of action in ECs (Fig. 4B).

Apoptosis—Apoptosis of ECs disrupts the barrier function of the endothelium and impairs 

its ability to effectively regulate the inflammatory response after injury. miRNA involvement 

in EC apoptosis has been primarily studied within the context of atherosclerotic models, 

which is a major cause of complications such as MI. Here, beneficial miRNAs prevent, 

whereas harmful ones promote EC apoptosis. The atherogenic factor oxidative low-density 

lipoprotein (ox-LDL) induces EC dysfunction and apoptosis and has been used both in 

vitro and in vivo to identify and investigate associated miRNAs. miR-26a was identified 

as dysregulated during atherosclerosis: Its expression was suppressed in a dose-dependent 

manner in human aortic ECs (HAECs) treated with ox-LDL (133). Overexpression of 

miR-26a targeted and repressed activity of transient receptor potential cation channel 

subfamily C member 6 (TRPC6), a calcium-permeable channel subunit, inhibiting apoptosis 

by inhibiting cytosolic calcium overload, which triggers the calcium activated apoptotic 

pathway.

In a separate study, ox-LDL–induced apoptosis was investigated in HAECs and human 

umbilical vein endothelial cells (HUVECS), and miR-150 was up-regulated during the 

process (134). Overexpression of miR-150 enhanced cellular apoptosis, whereas inhibition 

of miR-150 alleviated apoptosis. The proapoptotic miR-150 negatively regulates expression 

of Cu/Zn superoxide dismutase (SOD1) through the direct targeting of transcription factor 

ELK1. Last, miR-324 was shown to protect against hypoxia-induced apoptosis in endothelial 

progenitor cells (EPCs), which are active participants in the recovery process after MI, 

supporting both vascular endothelium repair and angiogenesis (135). Increasing expression 

of miR-324 down-regulates the MTFR1 gene, which, in turn, reduces mitochondrial 

fragmentation, stabilizes mitochondrial membrane potential, and results in decreased cellular 

apoptosis in hypoxic conditions.

Angiogenesis—Angiogenesis is a tightly regulated process involving multiple molecular 

pathways. miRNAs modulate many of the pathways involved, with beneficial miRNAs 

promoting and harmful miRNAs impeding the angiogenic process.

Multiple miRNAs that regulate angiogenesis modulate pathways activated by binding of 

VEGF (specifically VEGFA) to cell surface receptors, including HIF-1α, MAPK, and 

endothelial nitric oxide synthase (eNOS), which all contribute to promoting angiogenesis 

(132). Modulating HIF-1a is the proangiogenic miR-424, which is up-regulated in ECs 

under hypoxic conditions and targets Cullin 2 (136) to stabilize and up-regulate HIF-1α. 
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In contrast, the harmful miR-223, although also up-regulated in ischemic conditions, 

negatively regulates HIF-1α signaling by targeting ribosomal protein S6 kinase B1 and 

inhibits EC migration and proliferation (137). In the MAPK pathway, the proangiogenic 

miR-126 and miR-132 both suppress negative regulators of MAPK activity, Spred-1 and 

RASA1, respectively, whereas anti-angiogenic miR-24 targets p21-activated kinase (PAK4), 

inhibiting MAPK activity (138–141). miR-24 also targets the eNOS signaling pathway, 

along with miR-199a and miR-155, all of which suppress migration, proliferation, and tube 

formation of ECs (142, 143). Inhibition of these miRNAs increases NO bioavailability 

and promotes angiogenesis in these studies. Although these miRNAs target molecules of 

pathways activated by the binding of VEGF, certain miRNAs target VEGF directly, such as 

the antiangiogenic miR-590 (144).

Several other miRNAs affect angiogenesis by modulating signaling pathways that are not 

VEGF associated. In two separate studies, miR-210 was shown to promote angiogenesis, 

with overexpression increasing EC proliferation and migration by up-regulating hepatocyte 

growth factor expression and targeting focal adhesion kinase (145, 146). miR-92 also 

showed, in two separate studies, that it targets the proangiogenic integrin α5 (ITGF5) 

and that its inhibition substantially increased angiogenesis and granulation tissue formation 

(147, 148). Because miR-26a targets SMAD1, its inhibition led to increased angiogenic 

activity and reduced infarct size in a murine model of MI. In contrast, miR-27b promotes 

vascularization by targeting notch ligand DLL4 (149). Last, miR-185 inhibits proliferation, 

migration, and tube formation by targeting the CatK gene (150). Inhibition of miR-185 

significantly promoted these functions of angiogenesis under hypoxic conditions.

Other effects—Bayoumi et al. (151) determined that miR-532 overexpression decreased 

endothelial-to-mesenchymal transition (EndMT) in cardiac ECs. miR-532, which is up-

regulated by β2 adrenergic receptor/β-arrestin activity, exerts this cardioprotective function 

by targeting protease serine 23 (PRSS23), a positive regulator of maladaptive EndMT. The 

metabolic state of ECs can also alter MI outcomes, as Bartman et al. (152) identified that 

miR-21 increased glycolytic activity in ECs in hypoxic conditions. miR-21 was up-regulated 

under hypoxic conditions only in ECs, not in cardiomyocytes or fibroblasts, despite being 

predominantly expressed in fibroblasts under normoxic conditions. Inhibition of miR-21 

resulted in larger infarct sizes in a myocardial IRI murine model.

ROLE OF miRNAs IN IMMUNE CELL RESPONSE TO MYOCARDIAL 

INFARCTION

MI triggers an inflammatory cascade in the heart starting with an acute proinflammatory 

response, which is gradually replaced by an anti-inflammatory reparative phase. Therapeutic 

advancements generally aim to dampen the initial inflammatory response and promote the 

proreparative phase.

Inflammatory responses to myocardial infarction

Activation of inflammation—Upon injury, resident immune cells located in perivascular 

areas are activated, resulting in an acute inflammatory response. In the early inflammatory 
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phase, the infiltration of immune cells in the infarct area and accumulation of 

proinflammatory chemokines/cytokines result in not only the clearance of cellular debris 

but also in further damage to cardiac tissue. Macrophages, among the largest resident 

cell populations in cardiac tissue, are predominantly responsible for the production of 

inflammatory cytokines post MI. They release IL-1, IL-6, and TNFα, triggering further 

responses from multiple cell types, both locally and remotely. The activation of this 

inflammatory cascade mediates remodeling throughout the myocardium.

Resolution of inflammation—Increasing evidence indicates that the initial inflammatory 

response elicited by MI induces resident macrophages to switch from an inflammatory M1 

phenotype to a resolving M2 phenotype. M2 macrophages secrete anti-inflammatory signals 

critical for the repair response, allowing wound healing and scar formation, thereby limiting 

infarct size. Failure to activate reparative responses leads to adverse cardiac remodeling with 

further damage and, ultimately, heart failure.

Recent advances in miRNA therapies targeting immune cells

Of the studies surveyed, 17 of 213 focus on immune cells. Although some studies have 

applied miRNA therapies to either reduce the damage of the inflammatory response (10 of 

17 studies) or focus on promoting the reparatory pathways (3 of 17 studies), several other 

effective therapies have targeted both responses, exerting the overall functional benefits as 

an ensemble (4 of 17 studies). In targeting immune cells, beneficial miRNAs aim to prevent 

infiltration of immune cells and inflammatory signal production in the infarct area and 

promote M2 macrophage polarization, efferocytosis, phagocytosis, and angiogenesis signal 

release. Here, we summarize key miRNAs and their mechanisms of action in immune cells 

(Fig. 4C).

Infiltration—Infiltration of immune cells such as macrophages and neutrophils into the 

infarct area is one of the initial inflammatory responses after MI. Many miRNAs have 

been shown to regulate this process, providing interesting therapeutic targets. Recently, 

miR-141 has been shown to suppress neutrophil/leukocyte adhesion to ECs by modulating 

expression of the cell adhesion associated protein intercellular adhesion molecule–1, which 

plays a crucial role in regulating the migration of leukocytes across the endothelium into 

the myocardium. In vivo, pretreating mice with intravenous miR-141 mimics before IRI 

successfully reduced CD11b+ myeloid cells and F4/80+ macrophages accumulation in the 

ischemic myocardium (153).

miR-21 knockout mice showed enhanced infiltration of CD11b+ monocytes/macrophages 

in myocardium, whereas miR-21 overexpression markedly inhibited it (154). However, 

contrasting findings in another study showed that miR-21 inhibition in cardiac allografts 

led to reduced infiltration of CD45+ leukocytes, but there was no difference observed for 

macrophage infiltration (155). Intravenous injection of miR-144 mimics resulted in reduced 

infiltration of macrophages in the border zone, decreased MMP-mediated inflammation, and 

reduced fibrosis and apoptosis. The beneficial effects of miR-144 therapy were associated 

with mTOR- and P62-mediated autophagy signaling with improved cardiomyocyte survival. 
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Alterations in TGF-β signaling also demonstrated a role for miR-144 in modulating the local 

inflammatory response (156).

Intramyocardial injection of anti–miR-224–expressing lentivirus elevated vascular cell 

adhesion molecule–1 expression, regulating inflammation-associated vascular adhesion 

and transendothelial migration of macrophages/leukocytes, and MMP-2, an inflammatory 

mediator participating tissue remodeling in pathological processes (157). Other studies 

have shown that the overexpression of miR-106b, miR-148b, and miR-204 injection 

of miR-181b–enriched cardiosphere-derived exosomes (CDC-exo) or miR-24–enriched 

umbilical mesenchymal stem cells (MSCs) secreted exosomes (MSC-exo), and knockdown 

of miR-375 all suppressed CD68+ cell accumulation in the infarct border zone, leading to 

improved cardiac function with decreased infarct size (158–161).

Inflammatory cytokine production—The accumulation of proinflammatory cytokines 

plays a critical role in governing the progression and extent of tissue remodeling. The 

inhibition of this process by miRNA therapies successfully decreases myocardial infarct size 

and improves cardiac function. miR-21 mimic delivered to monocytes/macrophages in mice 

reduced inflammatory cytokine expression by directly inhibiting KBTBD7-mediated DAMP 

(damage-associated molecular patterns)–triggered inflammatory responses in macrophages 

(154). The delivery of miR-106b, miR-148b, and miR-204 individually encapsulated into 

polyketal nanoparticles in macrophages decreased Nox2 expression, inhibiting superoxide 

production and expression of proinflammatory genes IL-1α, IL-6, and TNF-α in vitro (158). 

Anti–miR-375 injection after MI in mice decreased inflammatory response by reducing 

the production of several proinflammatory cytokines including IL-6, interferon gamma-

induced protein 10 (IP-10), monocyte chemoattractant protein-1 (MCP-1), macrophage 

inflammatory protein-1 alpha (MIP-1α), regulated on activation, normal T cell expressed 

and secreted (RANTES), and MIP1-β (160). After reperfusion in rats and swine, 

intramyocardial injection of miR-181b–enriched CDC-exo also attenuated the expression 

of proinflammatory genes by targeting PKCδ (159).

M2 macrophage polarization—Polarization of macrophages toward the anti-

inflammatory M2 phenotype has been found to confer beneficial effects on cardiac repair. 

Intramyocardial injection of MSC-exo containing miR-182 after myocardial IRI reduced 

infarct size and alleviated damaged myocardial inflammation in mice. Mechanistically, 

miR-182 polarized macrophages toward the M2 phenotype and regulated downstream Toll-

like receptor 4 (TLR4) expression, mitigating proinflammatory cascades and enhancing 

subsequent repair (162).

Tail vein injection of miR-21 mimic delivered to cardiac macrophages by encapsulated 

nanoparticles promoted macrophage switching from a proinflammatory to reparative 

phenotype, thus inducing the resolution of inflammation (163). The polarization state 

was also shifted in cardiac macrophages isolated from CDC-exo–treated rats and swine. 

miR-181b inhibition of PKCδ expression further demonstrates that PKCδ acts as a 

downstream effector of CDC-exo–mediated cardioprotection (159). Moreover, increased 

CD206+ cells (M2 macrophage marker) in the left ventricular infarct border zone of 

anti–miR-375–treated mouse hearts after MI indicate that miR-375 knockdown can 
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trigger a macrophage switch toward the anti-inflammatory M2 phenotype (160). In vitro 

studies in macrophages further demonstrated that miR-375 modulated AKT signaling 

through phosphoinositide-dependent kinase-1 (PDK-1). PDK-1 knockdown abolished the 

macrophage polarization effect of miR-375, further confirming that PDK-1 is a critical 

mediator in miR-375–regulated macrophage phenotype shift.

Targeting efferocytosis and phagocytosis—The clearance of apoptotic cells by 

macrophages is thought to play a critical role in the reparative phase allowing for further 

recovery after MI. MI-associated transcript (MIAT), a long noncoding RNA, has been 

shown to regulate phagocytosis by acting as a sponge of miR-149, which directly targets 

antiphagocytic molecule CD47 (164). Knockdown of MIAT or miR-149 overexpression 

in murine macrophages reduced CD47 expression and promoted efferocytosis and 

phagocytosis, which consequently increased resolution of inflammation and clearance of 

apoptotic cells by macrophages. Similarly, transfecting EPCs derived from the peripheral 

blood of patients with ST-segment elevation MI with miR-324 mimic resulted in reduced 

apoptosis, increased proliferation, and elevated phagocytosis by targeting and inhibiting 

MtFr1 after peroxide-induced oxidative stress (135). The protective role of miR-324 

overexpression against oxidative stress-induced EPCs injury suggests that therapies leading 

to correction of miRNA expression may contribute to tolerance against injury by regulating 

phagocytosis pathways.

Targeting angiogenesis signal release—Macrophages engage in cross-talk with other 

cell types and release a variety of angiogenic signals to initiate and regulate angiogenesis 

in ECs in response to MI. After MI, M1 macrophages secrete proinflammatory exosomes 

(M1-exo), which contain abundant miR-155 (142). M1-exo containing miR-155 suppressed 

expression of several genes, including RAC1, PAK2, Sirt1, and AMPKα2, and modulated 

Sirt1/AMPKα2-eNOS and Rac family small GTPase 1 (RAC1) - p21 (RAC1)–activated 

kinase 2 (PAK2) signaling pathways, leading to the inhibition of angiogenesis and cardiac 

dysfunction. The antiangiogenic function of miR-155 makes its inhibition an attractive 

therapeutic strategy for MI (142).

miRNAs WITH PLEIOTROPIC EFFECTS

Most miRNA studies focus on one miRNA in a singular cell type. However, the literature 

demonstrates that many miRNAs have pleiotropic effects on myocardial recovery after 

MI, spanning different pathways, processes, and cell types. Some pleiotropic miRNAs 

regulate many points along the same pathway, whereas others regulate different pathways. 

Interestingly, multiple of these miRNAs demonstrate divergent effects among cell types—

promoting recovery processes in some cell types while impeding recovery processes in 

other cell types. Developing a clear mechanistic understanding of the pleiotropic effects of 

miRNAs will greatly advance their clinical translation.

miRNAs with convergent effects

Some miRNAs have convergent effects: promoting or impeding recovery processes in all 

cell types. For example, miR-210, miR-324, miR-494, and miR-532 all have beneficial 
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effects on both cardiomyocytes and ECs (42, 135, 145, 146, 151, 165–169). Although 

miR-324 had the same target (MTFR1) and effect (prevention of apoptosis) in both cell 

types (135), the other three miRNAs had different targets and affected different pathways 

in each cell type. In separate studies, miR-24 was shown to have beneficial effects on 

cardiomyocytes, fibroblasts, and ECs through the prevention of apoptosis, prevention of 

fibrosis, and activation of angiogenesis, respectively (24, 99, 141). On the other hand, 

miR-92a has been shown to have harmful effects on fibroblasts and ECs through the 

activation of fibrosis and the prevention of angiogenesis (105, 147, 148). Because of 

their convergent effects on multiple cell types studied, these miRNAs may be particularly 

promising therapeutic targets.

miRNAs with divergent effects

Interestingly, most of the pleiotropic miRNAs identified demonstrate divergent effects: 

promoting recovery processes in some cell types while impeding recovery processes in 

other cell types. We already described miR-29, which demonstrated contradictory effects 

on CFs versus cardiomyocytes. Another extensively studied miRNA that falls into this 

category is miR-199a. miR-199a was shown to induce adult cardiomyocyte proliferation 

after MI (70), and subsequent studies identified multiple proproliferative pathways regulated 

by miR-199a in cardiomyocytes (71). Additional studies have demonstrated that miR-199a 

can regulate other crucial pathways in cardiomyocytes including glucose metabolism, 

hypertrophy, apoptosis, and autophagy with divergent effects (66, 170–173) and negatively 

affect angiogenesis in ECs as well as induce pathological fibrosis in fibroblasts (125, 143).

Another noteworthy miRNA is miR-21. Multiple studies have demonstrated that miR-21 

prevents cardiomyocyte apoptosis after ischemic injury through direct inhibition of the 

proapoptotic molecule PDCD4 (38–40). In addition, treatment with miR-21 mimics has 

been beneficial to ECs by preventing apoptosis (152) and to immune cells by preventing 

inflammatory activation (152, 154, 163). However, despite consensus on the beneficial 

effects of miR-21 in cardiomyocytes and ECs, multiple studies have demonstrated harmful 

effects of miR-21 in fibroblasts, and other studies have shown contradictory effects in 

immune cells. The knockdown of miR-21 prevents pathological fibrosis by targeting the 

ERK/MAPK and TGF-β pathways (101, 111–113). In immune cells, miR-21 has been 

shown to both prevent macrophage infiltration and induce leukocyte infiltration (154, 

155). Ultimately, despite contradictory effects, the strongest evidence for the therapeutic 

capabilities of miR-21 comes from a recent study by Hinkel et al. (174), which demonstrated 

that inhibition of miR-21 prevented myocardial dysfunction in a pig model of MI.

Multiple miRNAs have been shown to have divergent effects on fibroblasts compared to 

cardiomyocytes. For example, miR-22, miR-29, miR-101, and miR-155 are all beneficial to 

fibroblasts by preventing activation and proliferation while being harmful to cardiomyocytes 

by promoting apoptosis or autophagy (59, 96, 97, 100, 120, 142, 175–179). In contrast, 

miR-144 prevents cardiomyocyte apoptosis (beneficial) while also promoting fibroblast 

proliferation (harmful), by targeting the same PI3k/AKT pathway in both cell types (156). 

Collectively, these miRNAs demonstrate the complexity of miRNA effects across multiple 

cell types in the heart and suggest the difficulties with using nontargeted miRNA therapies. 
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Thus, a cardiomyocyte-centric approach to miRNA therapy limits our understanding of 

pleiotropic effects.

PROSPECTS AND CHALLENGES FOR CLINICAL TRANSLATION

Promising preclinical studies have spurred interest in clinical translation of miRNA 

therapies. Currently, there are no miRNA therapies with U.S. Food and Drug Administration 

(FDA) approval; however, several early-stage biotechnology companies are focused 

solely on miRNAs, such as Miragen Therapeutics, Cardior Therapeutics, and Regulus 

Therapeutics. One phase 1 trial is currently ongoing to assess the safety of a miR-132 

inhibitor (NCT04045405) in ischemic heart disease. There are several clinical trials for 

treatment of related pathologies, including the use of a miR-21 inhibitor for prevention of 

renal fibrosis (NCT03373786) and a miR-29 mimic for pulmonary fibrosis (NCT03601052).

As discussed here, mimicry of “beneficial” miRNAs or inhibition of “harmful” miRNAs 

both have therapeutic potential. However, the latter has benefited from past innovation in 

the RNA interference field, which has recently begun, achieving success in the clinic, with 

the first drug of its class, Patisiran, approved by the FDA in 2018. It is thus not surprising 

that of the current miRNA therapeutics in either phase 1 or 2 clinical trials, the majority are 

ASOs targeting a specific miRNA (180), although mimics are also being tested. Similar to 

the siRNA field, these burgeoning new therapies face challenges including considerations for 

therapeutic timing, optimal oligonucleotide optimization, in vivo delivery, and side effects.

Oligonucleotide modifications

Naked oligonucleotides rapidly accumulate in the kidney and liver and are quickly cleared 

from the circulation (181). Moreover, cleavage by serum exonucleases and degradation in 

the intracellular endosomal compartment reduces drug potency. To improve stability, various 

chemical modifications to the nucleic acid backbone have been used in the design of miRNA 

mimics and inhibitors.

Phosphothiorates substitute a sulfur for oxygen in the phosphate group of the nucleotide. 

Compared to unmodified oligonucleotides, phosphothiorates are more resistant to nucleases 

and thus drastically increase circulation time (182). However, compared to an unmodified 

phosphodiester bond, they have decreased binding affinity to their target as measured by a 

lower melting temperature (Tm) (183). To address these issues, second-generation designs 

centered around the use of 2′-O modifications of the ribose sugar and locked nucleic 

acid (LNA) modifications while reducing and interspersing the number of phosphothiorate 

modifications. 2′-O-methylation (2′OMe), first tested in the early 2000s, enhances 

target binding (184). Krützfeldt et al. (185) used 2′OMe oligonucleotides with spaced 

phosphothiorate bonds and a cholesterol group at the 3′ end to increase resistance to 

exonucleases while preserving nuclease activity, so termed “antagomirs” (186).

LNA modifications contain methylene linkages of the 2′O to the 4′C in the sugar backbone, 

locking the structure into a C3′-endo sugar conformation (186). These afford an increase 

in Tm while simultaneously increasing nuclease resistance (187). Given their high binding 

affinity, much shorter LNA oligonucleotides can be designed. This has both implications for 
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target specificity, as shorter sequences more likely bind multiple families of miRNAs, and 

the related cost of synthesizing such an oligonucleotide. Recently, Obad et al. (188) reported 

the use of an 8-mer LNA oligo capable of powerful anti-miRNA effects.

Last, miRNA sponges have been explored as alternatives to ASOs (189). These dominant-

negative inhibitors contain multiple target sites complementary to a specific miRNA seed 

sequence. They have several advantages over traditional oligonucleotides, including the 

ability to silence families of RNA sharing a common seed. However, further progress on 

their design and delivery is required for clinical translation, and this area of research still 

trails ASOs in terms of optimization (190).

Delivery vehicles

The route of administration of miRNA therapeutics greatly alters their potency. Local 

administration methods such as intracoronary injection (IC), hydrogel-based patches, and 

intramyocardial injection have been studied (table S1). The availability of percutaneous 

coronary intervention as the preferred method for revascularization after MI (191) makes IC 

injection perhaps the most effective local delivery method. Despite this, the multiple dosing 

of locally administered drugs to the heart is invasive and difficult in humans. In a preclinical 

study of MI in 135 swine, Foinquinos et al. (192) demonstrated the efficacy of IC injections 

of miR-132 immediately after MI. Notably, they also show that intravenous infusions were 

as effective as IC injections, suggesting the possibility for minimally invasive delivery of 

miRNA therapies.

Intravenously injected ASOs delivered without a vehicle still require large doses to be 

effective in vivo (185). In addition, efficient delivery to the target tissue—in this case, the 

heart—is essential for optimizing in vivo delivery of miRNA therapies. For this purpose, 

carriers such as lipid nanoparticles (LNP) and nanoparticles (193) have been explored. 

Traditional LNPs have been clinically validated for siRNA delivery, including Patisiran. 

However, their use comes at the cost of additional components and toxicities. Because these 

systems have been reviewed extensively (181, 194), they will not be discussed in detail here.

Extracellular vesicles, including exosomes, are plasma membrane–bound cell-secreted 

vesicles that transfer biologically active cargo between cells and act as the endogenous 

analog of LNPs. In the field of heart repair, exosomes emerged first as paracrine mediators 

of cell therapy. They are secreted by all cells and contain a variety of contents, including 

miRNAs (195). Exosomes from several cell types, including MSCs, cardiac progenitor 

cells, and induced pluripotent stem cell–derived cardiomyocytes (iPS-CMs), are effective 

in promoting cardiac repair (196–198). Several advances have been made toward clinical 

translation, including the development of Good Manufacturing Practice protocols for the 

collection of therapeutic exosomes (199) as well as toward altering their cargo. Unlike 

transplanted cells and synthetic LNPs, autologous exosomes do not trigger the immune 

system. However, barriers to their use remain, like addressing their heterogeneity and 

production. Eventually, highly defined engineered exosomes may represent a way to fine-

tune miRNA therapy for the heart. For example, MSCs overexpressing miR-133 were more 

effective in cardioprotection than control vector MSCs in a rat model of MI, an effect 

attributed to an increase in therapeutic exosome content (200).
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Tissue-specific delivery

At this time, targeted delivery of miRNA therapeutics to the heart remains an unmet need. 

Biodistribution studies show that LNP and exosomes are entrapped by the liver and spleen 

and filtered from the blood by the kidneys’ glomerular barrier due to their size (201). With 

only an estimated 2000 to 5000 copies of oligonucleotide required within the cell for gene 

knockdown, drug loading doses can be reduced if delivery can be constrained to the heart 

(202). The conjugation of ASOs to N-acetylgalactosamine (GalNAc) to specifically target 

asialoglycoprotein receptors in the liver has contributed greatly to the commercial success 

and translation of Patisiran (203). Identifying similar extrahepatic targets, including in the 

heart, has not yet been achieved and is a key focus.

To this end, homing cardiac targeting peptides and engineered exosomes have been shown 

to increase exosome and miRNA delivery in cardiomyocytes after IC injection (204). 

Chemical aptamers can alter biodistribution. Xue et al. (205) used a nanoparticle dendrimer 

approach to target miR-1 inhibitors to the AngII receptor 1 in post-MI hearts. Antibody-

based targeting can also alter cardiac homing. Immunoglobulins are immunologically 

privileged proteins and are continually recycled in the circulation. Conjugation of siRNAs 

to an anti-CD71 Fab′ fragment allowed for durable gene silencing in cardiac tissues 

over a month’s time (206). Liu et al. (207) used anticardiac troponin antibodies to target 

liposomes containing anti–miR-1 to ischemic myocardium. However, the addition of a large 

macromolecule may also lead to several disadvantages. Genentech’s THIOMAB antibody-

siRNA conjugates demonstrated the ability to specifically target prostate cancer in vivo 

but exhibited suboptimal gene silencing due to sequestering in the endocytic department 

(208). In addition, targeting specific receptors may have other effects besides delivering 

the therapeutic molecule, such as inhibition or activation of its own downstream signaling 

pathway, which adds complexity to this delivery modality.

Endosomal escape

After organ-specific targeting, there remains a barrier to entry at the cellular level. 

miR-mimics and anti-miRs are relatively large (~10,000 kDa) and highly negatively 

charged, preventing membrane transport. Naked nucleic acid or those bound in carriers 

are ubiquitously taken up by endocytosis (209). Endocytosed molecules then enter the 

endosomal system and eventually are degraded in the lysosome (210). To have a clinical 

effect, miRNA therapeutics must escape the endosomal pathway into the cytosol. Using 

traceable siRNAs, Gilleron et al. (211) estimated that just 1% of delivered oligonucleotides 

actually escape the endosomal pathway. The exact biological mechanisms of how escape 

occurs remain to be elucidated. Approaches to designing delivery carriers, which bypass 

the endosomal system via diffusion through the endosomal membrane or disrupting the 

compartment pH, have been explored (212). Solving the endosomal escape barrier will be 

critical for miRNA therapeutic development moving forward.

Side effects of miRNA therapies

Like any drug, miRNA therapeutics are not without safety concerns. For example, 

phosphothiorates have also been reported to react with proteins, including FGF2 (213). 

Although careful sequence selection can eliminate off-target RNA hybridization, many 
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oligonucleotide modifications produce nonspecific effects, including differences in protein 

expression when compared to an unmodified siRNA (214).

Nucleic acids also broadly trigger the immune system, activating the TLR family (215). The 

use of delivery vehicles such as LNPs, which are designed to shield ASOs from the immune 

system, adds further reagents that may trigger an inflammatory response. A miRNA-34a 

mimic was halted in phase 1 (NCT02862145) studies after several patients developed severe 

adverse immune reactions. Development of these therapeutics can be thus unpredictable.

Abrogating the acute response to MI may also be dangerous. Therapies may be able to 

salvage damaged but viable cells adjacent to the infarct; however, an injured cardiomyocyte 

that is rescued may have impaired function, leading to arrhythmia. Similarly, interference 

of fibroblast function after MI has long been controversial, due to fear of cardiac rupture 

after failure to generate a scar. Although no studies reviewed here reported such outcomes, 

developing clear understandings of the mechanisms underlying miRNA therapies will go a 

long way toward preventing these dangerous side effects as we continue to search for more 

potent miRNA therapies.

The ability of miRNAs to regulate a variety of processes in different cell types leads to 

the additional concern of perturbations in signaling outside of the target organ. Although 

promoting cardiomyocyte proliferation may be desirable for cardiac recovery, altering those 

same pathways in other organs may result in tumorigenesis. The aforementioned miR-199a, 

which caused uncontrolled cardiomyocyte proliferation and subsequent arrhythmia, has also 

been linked to carcinogenesis and metastasis in certain cancers, such as melanoma and 

gastric cancer (216, 217). Similarly, inhibition of miR-34a has been shown to improve 

cardiac remodeling after injury (74, 218), although, at the same time, miR-34a has been 

studied as a tumor suppressor, and its mimicry has demonstrated anticancer effects (219, 

220). Collectively, these examples further highlight a need to understand cell type–specific 

effects of miRNAs as well as the need for tissue-specific delivery.

Alternative preclinical models

Another challenge in miRNA therapeutic development, similar to genome-based therapies, 

is the lack of adequate drug-testing platforms. Genomic differences in nonprimate animal 

models limit their use as a predictive model of the effects of a specific miR-mimic or 

anti-miR. Moreover, interspecies differences in ion channels and biological pathways fail to 

recapitulate human biology; for example, the mouse heart beats nine times faster than the 

human heart (221). Current cardiovascular drug testing relies heavily on simplified models 

such as human embryonic kidney 293 cells and Chinese hamster ovary cells overexpressing 

ion channels (222). Of the studies surveyed here, most used primary rat cardiomyocytes or 

the rat H9C2 cell line, highlighting a need for in vitro human disease models. Although 

primary human cardiomyocytes would be an ideal candidate for such a model, they are 

in prohibitively short supply and difficult to isolate. Recently, iPS-CMs have emerged as 

a promising source to fill this void (223). iPS-CMs can be produced in near limitless 

quantity and matured to adult-like phenotypes (224), allowing for high-throughput screening 

of thousands of miRNA candidates. The generation of more complex, three-dimensional 

models of human cardiac tissues using iPS-CMs can further be used to model MI (225). 
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Engineered cardiac tissue can also help shed light on miRNA transfer between cardiac cell 

types and myocyte-nonmyocyte communication, through extracellular vesicles or otherwise 

(226). Elucidating this biology may help further the design and development of miRNA 

therapeutics. How closely these models recapitulate human biology remains to be seen 

(227); however, they represent exciting technologies that can potentially decrease drug 

development cost.

Key remaining questions

There are several questions, which, when elucidated, would greatly advance the field of 

miRNA therapy for MI. A key question that remains is the timing of therapeutic delivery. 

The processes of cardiomyocyte death, fibroblast activation, and immune cell response 

occur acutely after ischemia onset. Because of the acute nature of cardiac injury, is it then 

necessary for intervention to take place rapidly after symptom onset? Or can a treatment 

administered in the later stages of wound healing (3 to 4 weeks) still show clinical 

improvement? Along a similar vein, could miRNA therapies potentially be preventative, 

suppressing these maladaptive processes before they begin? Very few preclinical studies 

have examined the timing of these deliveries and instead apply both the insult and 

the treatment simultaneously. Furthermore, the potential duration of clinical benefit from 

miRNA therapy is not well defined. Given the short-acting nature of miRNAs, it seems that 

repeated dosing would be required for long-lasting clinical benefit if early intervention is not 

possible. Should we target one cell type’s pathobiology or multiple? Is there a dominant 

effect of manipulating one cell type over another? The pleiotropic nature of miRNAs 

with convergent and divergent effects is one of its key advantages, yet it adds a degree 

of complexity to miRNA drug discovery unparalleled in other treatment modalities. The 

recent advancements in human iPS-derived in vitro models, including the ability to generate 

complex, three-dimensional models of human cardiac tissues, may represent a powerful and 

efficient strategy in answering some of these challenging questions.

CONCLUSION

Current interventions fail to recover the injured myocardium after MI, requiring the 

development of previously unexplored cardioprotective strategies. Here, we reviewed 

miRNAs as powerful regulators involved in post-MI remodeling and as the potential targets 

for MI therapy. Focusing on literature within the past 3 years and the foundational studies 

within the past 10 years, we identified a total of 213 publications describing the modulation 

of miRNAs in the treatment of MI, involving 116 unique miRNAs. Most of these miRNAs 

have been shown to play both beneficial and harmful roles in the progression of MI 

with divergent effects on different target cell types. To successfully translate the miRNA-

based therapies of MI to the clinic, a more detailed understanding of the mechanisms 

and dynamics of miRNA effects on each cell type needs to be clearly defined. Clinical 

translation of these therapies will also require improved administration protocols, organ-

specific delivery, and more predictive preclinical models.
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Fig. 1. Summary of myocardial infarct progression with a focus on the role of each cell type.
Immediately after infarction, the inflammatory phase begins and is characterized by 

irreversible cell death of all cell types in the infarct and the initiation of the inflammatory 

process through cytokine release. Next, the proliferative phase is characterized by the 

activation of CFs and the initiation of scar development. Macrophages also undergo 

polarization and switch to an anti-inflammatory phenotype during this phase. The 

maturation phase is characterized by cardiomyocyte hypertrophy in response to increased 

cardiac demand and the maturation of the scar that forms over the infarcted area. Last, 

long-term remodeling is characterized by pathological changes including maladaptive 

cardiomyocyte hypertrophy, chronic overactivation of CFs, decreased vascular density, and 

reemergence of an inflammatory response.
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Fig. 2. Summary of miRNAs surveyed in this Review.
For each study, in this Review, we categorized the overall effect of the miRNA studied, 

whether the miRNA was shown to affect multiple cell types (pleiotropy), which cell types 

were studied, and the physiologic process that the miRNA was shown to target. The numbers 

following each division represents the number of studies that is in that category.
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Fig. 3. Summary of miRNAs that target cardiomyocytes after MI.
miRNAs have been shown to regulate apoptosis, necrosis, and autophagy-mediated 

cardiomyocyte cell death. For cardiomyocyte proliferation, miRNAs have been shown to 

modulate multiple proliferative pathways as well as the cell cycle directly. Last, miRNAs 

have also been shown to regulate important processes including hypertrophy, arrhythmia, 

and inflammation. Select well-characterized miRNAs, their targets (written above the 

arrows), and the processes that they regulate are shown (i.e., miR-19b prevents apoptosis 

through BIM signaling). miRNAs prefaced with “anti-” denote that the inhibition of the 

miRNA is therapeutic (i.e., the inhibition of miR-1 prevents apoptosis through BCL-2 

signaling). For the complete list of miRNAs reviewed that affect cardiomyocytes, please see 

table S1.
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Fig. 4. Summary of miRNAs that target fibroblasts, endothelial cells, and immune cells.
(A) In CFs, miRNAs can regulate TGFβ signaling as well as ECM synthesis and 

pathological proliferation. (B) In ECs, a large number of miRNAs have been shown to 

regulate angiogenesis, whereas others have been shown to regulate EC apoptosis. (C) In 

immune cells, miRNAs can regulate multiple aspects of macrophage function including 

immune cell infiltration, cytokine production, macrophage polarization, efferocytosis, and 

phagocytosis, as well as angiogenesis signal release. Select well-characterized miRNAs, 

their targets (written above the arrows), and the processes that they regulate are shown 
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(i.e., miR-24 prevents TGFβ activation through FURIN signaling). miRNAs prefaced with 

anti–denote that the inhibition of the miRNA is therapeutic (i.e., the inhibition of miR-433 

prevents TGFβ activation through AZIN1 signaling). For the complete list of miRNAs 

reviewed, please see table S1.
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